54,35 €
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Nimish holds an MBA from Indian Institute of Management, Ahmedabad, India (IIMA), and a Bachelor of Technology in Electrical Engineering from Indian Institute of Technology, Kanpur, India (IITK). ¿
Chapter 1: Introduction to Reinforcement Learning.- Chapter 2: The Foundation - Markov Decision Processes.- Chapter 3: Model Based Approaches.- Chapter 4: Model Free Approaches.- Chapter 5: Function Approximation and Deep Reinforcement Learning.- Chapter 6: Deep Q-Learning (DQN).- Chapter 7: Improvements to DQN.- Chapter 8: Policy Gradient Algorithms.- Chapter 9: Combining Policy Gradient and Q-Learning.- Chapter 10: Integrated Planning and Learning.- Chapter 11: Proximal Policy Optimization (PPO) and RLHF.- Chapter 12: Introduction to Multi Agent RL (MARL).- Chapter 13: Additional Topics and Recent Advances.
| Erscheinungsjahr: | 2024 |
|---|---|
| Genre: | Importe, Informatik |
| Rubrik: | Naturwissenschaften & Technik |
| Medium: | Taschenbuch |
| Inhalt: |
xxv
634 S. 204 s/w Illustr. 634 p. 204 illus. |
| ISBN-13: | 9798868802720 |
| Sprache: | Englisch |
| Einband: | Kartoniert / Broschiert |
| Autor: | Sanghi, Nimish |
| Auflage: | Second Edition |
| Hersteller: |
Apress
Apress L.P. |
| Verantwortliche Person für die EU: | APress in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com |
| Maße: | 254 x 178 x 36 mm |
| Von/Mit: | Nimish Sanghi |
| Erscheinungsdatum: | 15.07.2024 |
| Gewicht: | 1,221 kg |